The Base Rate Fallacy

Who is more likely to be killed by a police officer in the United States: a white person or a black person? You might think, “Police kill more white people than black people in the US. So it’s the white person.” That answer contains a fallacy: the base rate fallacy. This post explains the fallacy, provides some examples, and suggests how to avoid it.

Continue reading The Base Rate Fallacy

The meaning of ‘statistical significance’ and of p-values

A 2019 paper in the Advances in Methods and Practices in Psychological Science found that most psychology textbooks, instructors, and students misinterpret ‘statistical significance’ and p-values. Talk about a headline! More important than the headline, however, are the right interpretations and what we can do to correct widespread misinterpretations. In this post, I explain the authors’ findings and the three solutions they propose.

Continue reading The meaning of ‘statistical significance’ and of p-values

University and Department Rankings: A Custom Solution

Lots of people pay close attention to the US News National University Rankings. But those rankings assume all users have the same priorities. Moreover, some people want field-specific rankings that compare universities at the department level (e.g., the Philosophy department at Harvard vs. the Philosophy department at MIT). Ranking-obsessed philosophers have had the Philosophical Gourmet Report to rank philosophy Ph.D. programs since at least 1996—1989 if you count the pre-internet version. For many reasons, academic philosophers are becoming more vocal about their criticism of these philosophy rankings (e.g., Bruya 2015, De Cruz 2016 2018). In this post, I will propose a (new?) custom ranking system. This system will address common complaints about philosophy’s existing ranking system: a custom ranking system will be more versatile, up-to-date, and generalizable.

1.  THE COMPLAINTS

The complaints about the rankings are voluminous — what else would you expect from philosophers? In lieu of an outline of every blog post and every public statement, I provide a list of major themes that fall into three different categories: the practice of ranking, the current process of ranking, and the current leadership of the ranking.

Complaints About Ranking

  1. Rankings might misrepresent the magnitude of the differences between departments.
  2. Rankings might indicate a false sense of hierarchy and/or prestige.
  3. Ordinal lists just aren’t that informative.

Complaints About Process

Continue reading University and Department Rankings: A Custom Solution

The Willpower Network

(Image from Robeter in the public domain)

I will be presenting a poster about “The Network Theory of Willpower” at the Montreal Neuroethics Conference For Young Researchers on April 17th. You can find the poster hereContinue reading The Willpower Network

Exercise, Neuroscience, and the Network Theory of Well-being


Michael Bishop outlines a network theory of well-being in which well-being is constituted by positive causal networks and their fragments (2012, 2015). ‘Positive’ refers to — among other things — experiences that have positive hedonic tones, the affirmation or fulfilment of one’s values, and success in achieving goals. So according to Bishop’s view, we flourish when certain positive causal networks are robust and self-reinforcing. For example, something good happens to us and that improves our motivation and mood, which then helps us achieve more, which improves our motivation and mood even more, and so on.

Bishop’s network account musters philosophical rigor by providing a systematic and coherent account of wellbeing that satisfies many common sense judgments about well-being. But lots of philosophical accounts can do that. So Bishop’s account does even more. It unifies and makes sense of a huge swath of the science. This provides some reason to think that Bishop’s account is superior to its competition.

So what’s this got to do with exercise and neuroscience?

1.  Neuroscience

I am largely persuaded by Bishop’s arguments for the network account of well-being, so I will skip my criticism of the project. Rather, I will add to it. Specifically, I will show how well is makes sense of the neuroscience. While I will not be able to review all of neuroscience, I can accomplish a more modest goal. I can review one part of neuroscience: the effect of exercise on the brain.

2.  Exercise

There is a wealth of evidence suggesting that regular physical activity and exercise forms an important part of one’s positive causal network of well-being by, among other things, increasing positive affect (Harte, Eifert, and Smith 1995), increasing confidence (Klem, Wing, McGuire, Seagle, and Hill 1997), reducing stress, relieving depression (Blumenthal et al 1999; Motl et al 2005) and preventing more than a dozen chronic diseases (Booth, Gordon, Carlson and Hamilton 2000; see also Biddle, Fox and Boutcher 2000 for a review of relationships between exercise and well-being). The mechanisms for all of these results are not entirely clear. But neuroscience is providing, in broad strokes at least, some clues about the mechanisms that can explain, in part, why exercise produces a series of positive effects in a well-being network (e.g., Meeusen 1995Farooqui 2014).

The Positive Effects in the Brain

Let’s start with how exercise produces direct positive effects in the brain. Firstly, exercise and regular physical activity directly improve the brain’s synaptic structure by improving potentiating synaptic strength (Cotman, Berchtold, Christie 2007). Secondly, exercise and regular physical activity strengthen systems that underlie neural plasticity—e.g., neurogenesis, the growth of new neural tissue (ibid., Praag et al 2014). These changes in the brain cause “growth factor cascades” which improve overall “brain health and function” (ibid.; Kramer and Erickson 2007).

Now consider how exercise has indirect positive effects in the brain by producing ancillary positive circumstances. Generally speaking, “exercise reduces peripheral risk factors for cognitive decline” by preventing—among other things—neurodegeneration, neurotrophic resistance, hypertension, and insulin resistance (ibid.; see also Mattson 2014). By preventing these threats to neural and cognitive health, exercise is, indirectly, promoting brain health and function.

Positive Causal Networks

It requires no stretch of the imagination to see how these positive effects will reinforce positive causal networks and thereby increase well-being. Even so, I will do you a favor by trying to demonstrate a connection between exercise, the brain, and the larger network of well-being.

We have already seen how exercise results in, among other things, increased plasticity. And increased plasticity results in improved learning (Geinisman 2000; Rampon and Tsien 2000). Also, the increased plasticity that results in improved learning can produce other positive outcomes: increased motivation, increased opportunities for personal relationships in learning environments, etc. (Zelazo and Carlson 2012, 358). Further, increased motivation and social capital can — coming full circle — result in further motivation (Wing and Jeffery 1999).

That right there is what we call a self-reinforcing positive causal network or positive feedback loop. And that, according to Bishop, is how we increase well-being (see figure 1).

Figure 1. Positive Causal Well-being Network. Exercise promotes outcomes in the brain that promote other positive outcomes outside the brain. Similarly, exercise reduces negatives outcomes that would reduce certain positive outcomes. This is adapted from causal network models found in Cotman, Berchtold, and Christie 2007.
Figure 1. Positive Causal Well-being Network. Exercise promotes outcomes in the brain that promote other positive outcomes outside the brain. Similarly, exercise reduces negatives outcomes that would reduce certain positive outcomes. This is adapted from causal network models found in Cotman, Berchtold, and Christie 2007.
This causal model shows how the neuroscience we just discussed implies a causal network. The nodes and causal connections in this model show how well-being is a matter of positive causal networks.

3.  What about Ill-being?

Obviously, I’ve only mentioned the neuroscience of well-being. But if we want to promote well-being, then we also have to decrease ill-being, right? Right. And once again, the network theory of well-being will fit nicely with the research on ill-being. For example, the research on emotion regulation (see Livingston et al 2015) implies some causal networks that can inhibit ill-being. The same can be said of the research about using deep brain stimulation in treatment-resistance depression (Bewernick et al 2010; Lozano et al 2008; Mayberg et al 2005; Neuner et al 2010).

4.  A Concern: Fitness

You might object by positing that Bishop’s theory of well-being will not fit neuroscience as well as it fits positive psychology. This objection can be dismissed in a few ways. Here are two ways.

First, we can safely accept that Bishop’s network theory of well-being will not fit neuroscience as well as it fits positive psychology. After all, Bishop’s network theory was designed to fit positive psychology, not neuroscience. It’s hardly a fault for a theory to not do what is was not intended to do.

Second, neuroscience is a larger domain than positive psychology. So of course it is harder for a theory to fit it. Allow me to explain. As the domain of discourse increases in scope, it becomes increasingly difficult for us to find a theory that fits all of it. So, because neuroscience is a larger domain than positive psychology, the challenge of providing a theory that fits neuroscience is always more difficult than providing a theory that fits positive psychology. So the fitness objection doesn’t necessarily reflect badly on Bishop’s theory. It might only reflect a difference between positive psychology and neuroscience.

Conclusion

Let me summarize. I mentioned a few cases in which Bishop’s theory of well-being can unifies and makes sense of neuroscience. Then I proposed a few more cases in which Bishop’s theory might do the same. And then I addressed a skeptical worry about the project I propose. So Bishop’s theory of well-being can accomplish even more than Bishop intended.

 

Image credit: “Blues Race Thru Belhaven” from Monumenteer2014, CC BY 2.0

Goals & Desires

Randy O’Reilly gave a talk at CU Boulder yesterday entitled “Goal-driven Cognition in the Brain:….” It was an excellent look at how goals have emerged in cognitive science and psychology and how goal-based models have improved upon previous behaviorist models. He also told a story about how goal-driven cognitive models can be grounded in neurobiology.1 There are two reasons I mention this talk. First, Randy’s talk convinced me that “goals” have a valuable place in the ontology of mental states. Second, his talk helped me realize an example that shows how goals and desires are dissociable. In this post, I will talk about this second item. Continue reading Goals & Desires